
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

1

Improving Grid Resource Allocation to monitor the task

Scheduling and Binding

P.Raga Priya1, S.Prathiba2

 1,2 Department of Computer Applications, B.S.Abdur Rahman University

Chennai, Tamil Nadu, India.

Abstract
This paper aims to improve Resource provisioning is one of the

challenges in the Grid environments. Selecting a computational

resource in a grid environment depends on computational power,

completion time; cost of utilizing the resources is a complex task.

As the number of resources in Grids increases rapidly, selecting

an appropriate resource for jobs has become a crucial issue.

During the selection of the resources grid should not be

overloaded. The problem arises when there are insufficient

resources for users to be served. To overcome this improved

Resource allocation Algorithm for scheduling jobs has been

proposed. The resource estimator estimates and chooses only the

feasible resources depending upon the resource cost and memory

cost.

Keywords: Grid, Resource allocation.

1. Introduction

The proliferation of the Internet and the availability of

powerful computers and high-speed networks as low-cost

commodity components are changing the way we do large-

scale parallel and distributed computing. The interest in

coupling geographically distributed (computational)

resources is also growing for solving large-scale problems,

leading to what is popularly called the Grid and peer-to-

peer (P2P) computing performance computing and high

throughput computing. The former aims at minimizing the

execution time of each network. These enable sharing,

selection and aggregation of, suitable computational and

data resources for solving large-scale data intensive

problems in science, engineering, and commerce. Task

scheduling is an integrated part of parallel and distributed

computing. Intensive research has been done in this area

and many results have been widely accepted. However,

with the emergence of the computational grid, new

scheduling algorithms are in demand for addressing new

concerns arising in the grid environment.

2. Related Work

Resource selection is one of the important and key

concepts in grid. In [1] the author has discussed about the

anatomy of the grid enabling scalable virtual organizations.

The real and specific problem that underlies the Grid

concept is coordinated resource sharing and problem

solving in dynamic, multi-institutional virtual

organizations. The sharing refers to direct access to

computers, software, data, and other resources, as is

required by a range of collaborative problem-solving and

resource brokering strategies emerging in industry,

science, and engineering. This sharing is, necessarily,

highly controlled, with resource providers and consumers

defining clearly and carefully just what is shared, who is

allowed to share, and the conditions under which sharing

occurs. Its disadvantages are

 It needs multiple administrative domains.

 Grid software should define the operating system

services to be installed on every participating

system.

In [2] the author has discussed about the scheduling

multiprocessor tasks with genetic algorithms Task

scheduling which is the process of deciding which

instructions will be run by which processor, and in which

order. We assume that the multiprocessor system is

uniform (homogenous) and non preemptive etc. The

processors are identical, and a processor completes the

current task before executing a new one. Task execution

time can be non uniform. Every processor can

communicate with each other and every processor has own

memory. The drawbacks of this system are

 A processor can execute at most one task at a

time.

 The processor availability is limited.

With the proliferation of grid, at least two new things need

to be considered in a scheduling model. The first is the

quality of service. In a grid environment, applications

compete for the best Quality-of-Service (QoS) from the

remote resources. The resources provide non dedicated

services to the applications. The scheduler in the grid

environment needs to consider the QoS to get a better

match between applications and resources. The other issue

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

2

is how to handle the non-dedicated network. For non-

dedicated networks, since they have their own local jobs,

they cannot provide exclusive service to remote jobs. So

how to predict the job computation time for non-dedicated

network needs to be addressed. In current grid task

scheduling, tasks with or without QoS request compete for

resources. While a task with no QoS request can be

executed on both high QoS and low QoS resources, a task

that requests a high QoS service can only be executed on a

resource providing high quality of service. Thus, it is

possible for low QoS tasks to occupy high QoS resources

while high QoS tasks wait as low QoS resources remain

idle.

There are three main phases of scheduling on a grid. Phase

one is resource discovery, which generates a list of

potential resources. Phase two involves gathering

information about those resources and choosing the best

set to match the application requirements. In phase three

the job is executed, which includes file staging and

cleanup. There are two different goals for task scheduling:

high performance computing and high throughput

computing. The former aims at minimizing the execution

time of each application and generally used for parallel

processing, whereas the latter aims at scheduling a set of

independent tasks to increase the processing capacity of

the systems over a long period of time. Our approach is to

develop a high throughput computing scheduling

algorithm.

3. Proposed Model

The proposed system, addresses the QoS requirements

along with preemption-aware scheduling, it addresses the

valuable external requests along with other requests, it

minimizes the external request response time. It also

minimizes the number of Virtual Machine preemptions

both for more user satisfaction and also system utilization

purposes. All request type gets benefited by the proposed

model.

The concern of this paper is utilization of resources in the

computational farm. Utilizing the resources effectively and

efficiently is an important problem. Our proposed work

depends on

 More resource utilization

 Minimizes the external request response

time.

 Minimizes the number of virtual

machine pre-emption both for more user

satisfaction and also system utilization

purposes

 Fig. 1 Architecture diagram

User needs to authenticate to use the grid service and the

user will give the task and budget and deadline to the grid

resource. Request handler will handle the task and given

deadline, the main purpose is used to select the resource

for the requested task. User response will display the

amount for the finished task and time taken.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

3

Table 1: Notations used in the Algorithm

Symbols

 Description

N

Number of clusters

Mj

 Number of computing

elements in cluster j where

1 ≤ j ≤ N

ˆΛj

Arrival rate of external

requests to cluster j after

load distribution

Μj

Second moment of local

requests service time on

cluster j

Ρ
i

τj + λj

M
i

ˆΛj κj

uj

Utilization of cluster j

 (γj + ρj)

ηj

Number of VM

preemptions that happen in

cluster j

T

Average response time of

all external requests

Tj

Average response time of

external requests on cluster

j

vj

Average number of VMs

required by external

requests

dj

Average duration of

external requests

s
i
j

Processing speed (MIPS) of

processing element on

cluster j

 Fig. 2 Resource Allocation Algorithm

4. Simulation and Results

The simulation is done using Java as the front end and

mysql as back end.

The user Registration table maintains the user information

such as first name, last name, email id, user name and

password. These are provided by the user during the

registration as shown in Fig 3

Fig. 3 Screenshot for client registration

The user enters the username and password.

 ALGORITHM

 Output: Selected Cluster (js)

 fastestCluster ← findFastestCluster(θ);

 For each Cluster j do

 Xj ← 0;

 For each RequestType i do

 P
i
j ← Pj * GetProportion(i);

 Y
i
j ← 0;

XfastestCluster ← 1;

 For each external request received do

 i ← GetRequestType();

 min ← MaxValue;

 foreach Cluster j do

 if (P
i
j /= 0) then

 D = (Xj + Y
i
j)/P

i
j ;

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

4

This is shown in Fig 4.

 Fig.4 Screenshot for Client login

The grid service(task)request allows the user to select the

type of request , task id and to give the deadline etc.Fig 5

displays the grid service(task)request.

 Fig.5 Screenshot for Grid Service(Task)Request for client

5. Conclusion and Future work

In this paper we presented how to select a set of resources

that satisfies the user specification. In the proposed system,

resource is utilized efficiently; external request response

time is minimized. In future we have planned to extend our

work based upon reservation and to concentrate on more

QOS parameters.

References
[1] Ian Foster, Carl Kesselman, Steven Tuecke, ”The anatomy of

 the grid enabling scalable virtual organizations “Information

Sciences Institute, The University of Southern California,

Marina del Rey,2003.

[2] Marin golub, Suad kasapovic, “Scheduling multiprocessor

tasks with genetic algorithms” Department of Electronics,

Microelectronics, Computer and Intelligent Systems. Unska

3, HR-10000 Zagreb, Croatia, 2004.

[3] M.Prakash, T.Ravichandran, “An Efficient Resource

Selection and Binding Model for Job Scheduling in Grid”,

European Journal of Scientific Research, Vol. 81 No.4, 2012.

Pp. 450-458.

[4] Haruna Ahmed Abba, Nordin B. Zakaria and Nazleeni Haron,

“Grid Resource Allocation: A Review”, Research

Journal of Information Technology 4(2): 38-55, 2012 ISSN:

2041-3114, © Maxwell Scientific Organization, 2012.

[5] G. Sabin, R. Kettimuthu, A. Rajan, P. Sadayappan,

Scheduling of parallel jobs in a heterogeneous multi-site

environment, in: D. Feitelson, L. Rudolph,U.

Schwiegelshohn (Eds.), Job Scheduling Strategies for

Parallel Processing, Berlin, Heidelberg, in: Lecture Notes in

Computer Science, vol. 2862, Springer,2003, pp. 87–104.

